
Adjustable Time-Window-Based Event
Detection on Twitter

Qinyi Wang1, Jieying She2, Tianshu Song1, Yongxin Tong1(B),
Lei Chen2, and Ke Xu1

1 SKLSDE Lab and IRC, Beihang University, Beijing, China
{wangqinyi,songts,yxtong,kexu}@buaa.edu.cn

2 The Hong Kong University of Science and Technology, Hong Kong SAR, China
{jshe,leichen}@cse.ust.hk

Abstract. Twitter has become an important platform for reporting
breaking news and instant events. However, it is almost impossible to
detect events on Twitter manually due to the large volume of data and
the noise in them. Though automatic event detection has been stud-
ied a lot, most works can only detect events in a fixed time window.
In this paper, we propose an efficient system that can detect events in
adjustable time windows. We detect terms with unusual frequency and
group them into events. We further modify a segment tree data struc-
ture to support adjustable time window based event detection, which
can efficiently aggregate statistics of terms of varied-sized time windows
and is both space and time saving. We finally validate the effectiveness
and efficiency of our proposed techniques through extensive experiments
on real datasets.

1 Introduction

Twitter has become an important platform for fast reporting and broadcasting of
news and events these days mainly due to it convenience and speed of spreading
information. However, due to the large volume of data generated, monitoring
and detecting events manually is infeasible and automatic detection is required.
Although automatic event detection has been well studied in traditional media,
i.e. the Topic Detection and Tracking (TDT) research program, event detection
on Twitter is much more challenging due to its noisy data.

Some event detection techniques have been proposed recently. However, they
fail to meet the following adjustable time window based event detection require-
ment. Suppose some users want to know what is happening around the world by
monitoring Twitter in real-time. They would like to be reported breaking news
or the hottest events during the past 120 min. When spotting a hot event in the
past 120 min, they want to learn about how it developed and thus would like to
check what happened during the past 60, 30 and 10 min.

Existing techniques cannot solve the above scenario due to the following
reasons. First, they do not support detecting events in adjustable sizes of time
windows and only divide the timeline into fixed time windows where events are
c© Springer International Publishing Switzerland 2016
B. Cui et al. (Eds.): WAIM 2016, Part II, LNCS 9659, pp. 265–278, 2016.
DOI: 10.1007/978-3-319-39958-4 21

266 Q. Wang et al.

to be detected, which may not adapt to detecting different types of events or
attract users desiring various degrees of real-time. Second, many works only
focus on detecting category-specific or topic-specific events [8,12], which cannot
attract users with broad interests. Third, some techniques, e.g. learning topic
models [11], were too complex to support real-time application, which is impor-
tant in case of breaking news and emergent events. Finally, some unsupervised
techniques required several parameters or thresholds to detect events by identi-
fying bursty terms [8], which could be sensitive to the parameter settings and
hard to adapt to the dynamic environment of Twitter.

In this paper, we address the above problems with a solution with the fol-
lowing features. First, our solution supports real-time applications. We perform
simple operations on the data with low latency, enabling timely event report.
The time and memory consumed to detect events should not increase as time
elapses and only recent statistics of data will be kept while obsolete ones will
be discarded. Second, our solutions is completely unsupervised and no labeled
data is required. Third, our solution is free of thresholds to identify bursty terms.
Finally, we design a space-saving data structure that can efficiently detect events
w.r.t. adjustable sizes of time windows.

Our approach achieves the goals by detecting unusually frequent words within
an adjustable time window. We assume that an emerging event is indicated by
a group of suddenly frequent terms, and we define a burst score for each term
and group bursty terms based on their co-occurrence into candidate events. To
enable adjustable time window based event detection, we modify the segment
tree, Streaming Timeline Tree (ST-tree). More specifically, we first assume a
minimum time window as a time unit, and an adjustable time window as several
continuous time units. By properly storing statistics that we need to calculate
scores for terms in the nodes and manage obsolete nodes and new ones, we are
able to support adjustable time window based event detection.

The major contributions of our paper include:

– We propose a simple, effective and efficient method to detect open-domain
emerging events.

– We design a data structure to support adjustable time window based event
detection.

– We verify the effectiveness and efficiency of the proposed methods through
extensive experiments on real datasets.

The rest of the paper is organized as follows. In Sect. 2, we formally define
our problem. We then describe in detail our event detection algorithm in the
Sect. 3. In Sect. 4, we present our ST-tree for flexible time frame event detection.
Evaluation of our proposed methods is conducted in Sect. 5. We review previous
works in Sect. 6 and conclude this work in Sect. 7.

2 Problem Formulation

We address our problem in a real-time environment, where we continuously
receive and process streaming data from Twitter. A group of consecutive time

Adjustable Time-Window-Based Event Detection on Twitter 267

windows (time frame) fc−n+1, · · · , fc are some non-overlapping time intervals of
equal size on the timeline, where fc is the most recent one. A time window is
the basic unit which we identify events for. Note that “time frame” and “time
window” are the same meaning and they are used interchangeably in this paper.

The major characteristic of an emerging event is that more and more people
start to talk about it and some relevant terms, which will exhibit unusually
higher frequency patterns than past records. We name them as abnormal terms.
Three factors determine whether a term is abnormal or not: term frequency, the
number of users using the term (i.e. user frequency), and its frequency statistics
in previous time windows. More details will be described in the next section. In
our work, we detect events with a sliding time window setting.

Definition 1 (Sliding time Window). Given the current time window fc with
length L starting at time ti and ending at ti + L, the next sliding time window
fc+1 begins at time ti + G and ends at ti + G + L, where G is the sliding gap
such that G < L and L is divisible by G.

Definition 2 (Event Detection). The event detection problem is to identify
groups of abnormal terms within the current time window and report the most
abnormal groups as possible events in a sliding time window setting.

We next define our adjustable time window based event detection problem.

Definition 3 (Time Unit). A time unit is the minimal size of the time window
available.

Definition 4 (Adjustable Time Window). An adjustable time window is
one that consists of several consecutive time units, and the number of time units
is specified by users.

We limit the maximum number of time units an adjustable time window can
consist. The reason is that a very long time window is uninteresting to Twitter
users as mainstream media will catch up and report the events later. Though
a larger time window may be applicable to event tracking or summarizing, we
focus on detecting emerging events and thus define a maximum time window.

Definition 5 (Adjustable Time Window Based Event Detection). The
adjustable time window based event detection problem is to identify groups of
abnormal terms within the current adjustable time window and report the most
abnormal groups as possible events in a sliding time window setting with a sliding
gap equal to the length of a time unit.

3 Event Detection

3.1 System Overview

Our event detection system consists of two stages of processing. The first stage
is to process each new tweet and store some statistics, and the second stage is
to identify events at the end of the current time window.

268 Q. Wang et al.

3.2 Processing of Tweets

For each new tweet, we use unigrams as terms, since we find that unigrams out-
performs n-grams in both effectiveness and efficiency. Details will be presented in
Sect. 5. We then update the statistics of the current time window fc: the number
of tweets cdfc within fc and for each term w a set of ids tweet setfc,w referring
to the tweets that contain the term and its frequency cwfc,w. For each term,
we further maintain uwfc,w,u for each user u, which is the number of tweets
published by u during fc that contain w, and uwtfc,w:

uwtfc,w =
∑

u

(2 − 1
2uwfc,w,u−1

)(uwfc,w,u > 0) (1)

We observe that around 30% of tweets are retweets, many of which are
generated by followers of celebrities, which makes the corresponding cw and
uwt extremely large and thus results in false alarms. Note that breaking news
could also trigger a large number of retweets, but it has longer retweeting chains
and more origins (i.e. the original authors). Thus, when dealing with a tweet
published by ur and retweeted from uo, we update uwfc,w,uo

instead of uwfc,w,ur

to reduce false alarms caused by retweets.

3.3 Identification of Abnormal Terms

Identification of abnormal terms is performed at the end of the current time win-
dow. We define significance score ssfc,w, abnormality score asfc,w and abnormal
terms as follows. Note that when calculating the average scores ssavg,w over past
time windows, we use the most recent past non-overlapping time windows.

ssfc,w =
cwfc,w

cdfc
∗ uwtfc,w

cdfc
(2)

ssavg,w =
cwavg,w

cdavg
∗ uwtavg,w

cdavg
(3)

asfc,w =
ssfc,w
ssavg,w

(4)

Definition 6 (Abnormal Term). A term with abnormality score larger than 1
is abnormal.

Notice that we simply regard all terms with scores higher than historical
records as abnormal, as any threshold is sensitive to the fast changing data and
it is impossible to define a universal threshold to effectively select terms under
our unsupervised scheme.

Adjustable Time-Window-Based Event Detection on Twitter 269

3.4 Clustering Abnormal Terms

We then group terms into events. The main idea is to cluster two terms based
on how often they co-occur as words that co-occur often are more likely to refer
to the same event. We introduce a threshold cluster thres to determine whether
two terms should be grouped together, which controls how cohesive a cluster is.

We maintain a set term setfc,m for each tweet m containing abnormal terms,
which consists of all the abnormal terms mentioned in m. Such sets can be easily
created from tweet set of abnormal terms after we identify them. And we have
the following lemma stating under what condition two terms co-occur.

Lemma 1. Given a term wi and tweet setfc,wi
, any term wj(�= wi) ∈

∪mi∈tweet setfc,wi
term setfc,mi

must co-occur with wi for at least once. Any other
term wk(�= wi) /∈ ∪mi∈tweet setfc,wi

term setfc,mi
does not co-occur with wi.

Then during clustering, we find highly co-occurring terms for each term wi

by scanning each term in ∪mi∈tweet setfc,wi
term setfc,mi

and counting the fre-
quency of the terms. The process is illustrated in Algorithm 1.

Algorithm 1. Clustering Abnormal Terms
input : Abnormal terms {w1, · · · , wn}, {tweet setfc,wi

}, {term setfc,mi
}

output: Clusters {C1, C2, ..., Cm}
1 Mark each term as one cluster containing only itself;
2 foreach i ← 1 to n − 1 do
3 foreach mi ∈ tweet setfc,wi

, wj ∈ term setfc,mi
do

4 if wi and wj are already in the same cluster then
5 continue;

6 if wj /∈ candidate then
7 Add wj to candidate, cntwj

← 1;

8 else
9 cntwj

← cntwj
+ 1;

10 foreach wj ∈ candidate do
11 if cntwj

/min(|tweet setfc,wi
|, |tweet setfc,wj

|) > cluster thres then

12 Combine the clusters containing wi and wj ;

13 return Clusters {C1, C2, ..., Cm}

3.5 Ranking Events

Finally, we return the top-k ranked clusters based on their abnormal terms:

Definition 7 (Rank of Clusters). Given two clusters Ci and Cj, Ci ranks
higher than Cj if and only if asfc,wi1

> asfc,wj1
, or asfc,wi1

= asfc,wj1
and

asfc,wi2
> asfc,wj2

, where wi1 , wi2 are the two terms of Ci with the highest and
second-highest abnormality scores respectively, and wj1 , wj2 are the two of Cj

with the highest and second-highest abnormality scores respectively.

270 Q. Wang et al.

3.6 Complexity Analysis

The major time-consuming component is clustering, whose complexity is O(n ∗
M ∗ K), where n is the number of abnormal terms, M is the maximum size of
a tweet set, and K is the maximum size of a term set (relatively small). We
maintain six statistics for the current time window, and three for the past few
time windows, whose number is V ∗ L/G, where V is the number of past time
windows. Thus, the total space complexity is O(2W (V L/G+1)+UW +2MW),
where W is the number of terms, and U is the maximum number of users.

4 Adjustable Time Window Event Detection

In this section, we introduce the ST-tree structure. Let UL denote the length of
a time unit, then LM ∗ UL is the maximum length of time window supported.

4.1 Description of ST-tree

Basically, ST-tree is almost identical to segment tree that allows efficient query
for statistics of an arbitrary interval. We update ST-tree in a different way. We
first present some basic concepts of ST-tree in this subsection.

ST-tree is a binary tree. Each leaf represents a time unit, and each parent
is the union of the time intervals its children refer to. We have (V + 1) ∗ LM

time units(leaves) in ST-tree, and where V is the number of time windows we
average on. Suppose the current time unit is tuc, the root then covers the whole
time interval starting from the starting point of unit tuc − (V +1) ∗LM +1, and
ending at the ending point of tuc. Figure 1a shows an example of ST-tree.

17:00-18:30

15:30-17:00

17:30-18:30

17:00-17:30

16:00-17:00

15:30-16:00

Queried
time

frame

Avg
time

frames

(1)

(3)
(14)

(7)

(6)

(5)

(4)(2)

(15)

(11)

(10)

15:30-18:30

(15)(15)
18:00-18:30

17:30-18:00

(11)(11)
16:30-17:00

16:00-16:30

(a) The Original ST-tree

17:00-18:30

18:30-19:00
16:00-17:00

17:30-18:30

17:00-17:30

16:00-17:00

18:30-19:00

(1)

(3)
(14)

(7)

(6)

(5)

(4)(2)

(15)

(11)

(10)

16:00-19:00

()
18:00-18:30

()
17:30-18:00

()
16:30-17:00

16:00-16:30

(b) After the 1st Update

17:00-18:30

18:30-19:30
16:30-17:00

17:30-18:30

17:00-17:30

19:00-19:30
16:30-17:00

18:30-19:00

(1)

(3)
(14)

(7)

(6)

(5)

(4)(2)

(15)

(11)

(10)

16:30-19:30

()
18:00-18:30

()
17:30-18:00

()
16:30-17:00

19:00-19:30

(c) After the 2nd Update

Fig. 1. An example of ST-tree with time units of length 30 min (L = V = 2).

Algorithm 2. Build ST-tree
input: Current node x, st and ed

1 Mark x as representing [st, ed);
2 if Length of [st, ed) > UL then
3 Create children xchild left and xchild right of x;

4 middle ← st + � (ed−st)
2UL

�UL;

5 Run 2 with input xchild left, st and middle;
6 Run 2 with input xchild right, middle and ed;

Adjustable Time-Window-Based Event Detection on Twitter 271

Algorithm 2 presents how the structure of ST-tree is built during initializa-
tion, starting from the root given the initial interval [st, ed].

Each node of ST-tree stores three statistics for the time interval it represents:
cw, uwt and cd. When processing the current time unit, we could directly update
the three statistics stored at the responding leaf by creating index for the leaves
and visit them directly as we process the leaves from left to right in order.
Updates for the other nodes are initiated when we arrive at the end of the
current time unit. The detailed procedure will be described soon.

Besides the ST-tree, we also store tweet set in the most recent LM time units.
Merging of the tweet sets of the most recent L time units for each term will be
performed given a query for events in time window of length L∗UL(1 ≤ L ≤ LM).

4.2 Update

4.2.1 Calculation of Statistics

When at the end of the current time unit, we update ancestors of the current leaf.
The statistics stored at a parent representing time interval fparent are following
(5) to (7), where fchild left and fchild right are the time intervals represented by
its children.

cwfparent,w = cwfchild left,w + cwfchild right,w (5)
uwtfparent,w = uwtfchild left,w + uwtfchild right,w (6)

cdfparent
= cdfchild left

+ cdfchild right
(7)

The true value of uwtfparent,w should not be the sum of uwtfchild left,w and
uwtfchild right,w following the original definition of uwt. However, since storing a
user set for each term in each node is too space-consuming, we instead store a
single value and calculate the value of uwt by (6). In this way, we reduce our
space and time consumption by relaxing the constraints on term’s user frequency.

The whole process of updating is as follows: starting from the parent of the
current leaf, we visit each node in the path from the current leaf to the root and
update the corresponding statistics following (5) to (7).

4.2.2 Dealing with Obsolete Nodes

When processing the first (V + 1)LM time units, all we have to do is to fill in
the values of the nodes. However, starting from the (V + 1)LM + 1 time unit,
we should keep the most recent statistics and discard the obsolete ones, as the
statistics of unit tuc − (V +1)LM +1 will no longer be used when we proceed to
the next unit tuc + 1. We also need to find a node to store statistics of tuc + 1.

Removing or adding nodes to the original tree will destroy its balanced struc-
ture. Thus, we propose to use the leaf representing tuc − (V +1)LM +1 to store
statistics of tuc + 1, so the oldest leaf becomes the newest leaf after update.
Figures 1b and c show how the ST-tree changes after two updates of the original
one in Fig. 1a.

272 Q. Wang et al.

Algorithm 3. Update of ST-tree
input : ST and the current leaf x
output: Updated ST

1 Mark each term as one cluster containing only itself;
2 while x is not the root of ST do
3 x ← x’s parent;
4 Update interval and statistics of x following (5) to (7);

5 return ST

Algorithm 4. Return Statistics of a Given Time Interval
input : Current node x, ST and [ts, tt)
output: {cw[ts,tt),wi

}, {uwt[ts,tt),wi
} and cd[ts,tt)

1 Initialize {now cwwi
}, {now uwtwi

} and now cd to 0;

2 if The interval of x ⊂ [ts, tt) then
3 return {cwwi

}, {uwtwi
} and cd stored at x

4 else
5 foreach Each child xc of x do
6 if The interval of xc overlaps with [ts, tt) then
7 Run Algorithm 4 with input xc, ST and [ts, tt), aggregate the returned results

to {now cwwi
}, {now uwtwi

} and now cd;

8 return {now cwwi
}, {now uwtwi

} and now cd

The process is illustrated in Algorithm 3. We use the oldest leaf to store
statistics for the coming unit, and update its time interval. When arriving at the
end of the newest time unit, we update its ancestors as usual. The time interval
represented by a node may no longer be continuous.

4.3 Query

The query process is identical to that of our original problem, except that we
first need to obtain the statistics for the queried time window and the past V
time window from ST-tree, which is equivalent to the following problem: given
a time interval [ts, tt), return its statistics. The process is performed by running
Algorithm 4 with input root of ST , ST , and [ts, tt).

Note that Algorithm 4 applies to queries issued in the first (V + 1)LM

time units as well as those issued afterwards. For queries issued after the first
(V + 1)LM time units, the time intervals represented by the nodes may not be
continuous. However, in such case, line 3 of Algorithm 4 will not be executed
and we will keep exploring the children of such nodes until we reach at a node
representing a continuous time interval that is subset of [ts, tt).

Example 1. Suppose the current ST-tree is Fig. 1c, and we query for the statistics
of 17:30-19:00. By running Algorithm4, we will visit nodes 1, 2, 4, 3 and 7 in
order, and aggregate the statistics stored in node 4 and 7.

Adjustable Time-Window-Based Event Detection on Twitter 273

4.4 Complexity Analysis

We compare ST-tree with two naive methods. One is Space-Severe (SS), which
stores statistics for all possibly used time windows. Another one is Time-
Severe (TS), which stores statistics only for time units and aggregates the results
during querying. We only count the number of time windows/units/nodes.

Let N = LM ∗ (V + 1) denote the number of leaves in ST-tree. The space
complexity of ST-tree is O(N). SS takes O(NLM) space, and TS takes O(N)
space. ST-tree takes O(N) to build the tree and O(logN) time to update. SS
takes O(LM) time to update, and TS takes only O(1) time. For query, the
averaged time taken by ST-tree is O(logN). SS takes O(V) time, and TS takes
O((V + 1)L) time.

5 Experimental Study

5.1 Experimental Setup

We perform our experiments on machines with 2xIntel E5-2650 (8-core, 2 GHz,
20 M cache) CPU and 64G DDR3-1333 RAM. For all the experiments, we select
the top-20 clusters detected in each time window and output the top-20 terms
with the highest abnormality scores.

Twitter. We collected in total 11,625,484 tweets through Twitter’s streaming
API1 continuously from Oct 31 to Nov 6, 2013. Only tweets written in English are
used for evaluation. We use the data on October 31 to calculate past statistics,
and detect events since Nov 1. The statistics are presented in Table 1.

Wikipedia. We refer to Wikipedia’s current eventsportal, which keeps a list of
daily events around the world with description of a few sentences, to see whether
our algorithm can identify such events.

The Wikipedia data is processed as follows. For each event, we first extract
non-stop words from its description as keywords. Second, we select 48 events
that are ever mentioned in the Twitter dataset. Finally, we follow the links pro-
vided by Wikipedia to the background articles to check the exact time when
mainstream media reported the events if available. When evaluating our algo-
rithm, we do not count any cluster reported with delay of more than one day.
To check whether a certain event is detected, we select clusters that contain at
least two keywords of the event and then check manually whether the selected
clusters contain highly relevant keywords of the events.

Table 1. Statistics of Collected Data

Number of retweets 3,488,124

Number of tweets per minute (on average) 1,153

Number of users 6,418,278

Number of different retweeted users 1,268,762

1 https://dev.twitter.com/docs/api/1.1/get/statuses/sample.

https://dev.twitter.com/docs/api/1.1/get/statuses/sample

274 Q. Wang et al.

5.2 Effectiveness Evaluation

We next evaluate our effectiveness in both aspects: how many events are detected
and the impact of different parameter settings.

Accuracy. We compare with TwiCal[11] and Twevent [7] in this part of eval-
uation. TwiCal maintains a continuously updating demo2, and thus we can
directly obtain a list of events detected by TwiCal. Since we follow the meth-
ods and settings of Twevent to detect events, we also set V = 3, UL = 10 min
and clu thres = 0.8 for our proposed algorithm.

We present the results in Table 2. The only event that is detected by TwiCal
but not by the others is that India launches a PSLV-XL rocket. The results indi-
cate that our algorithm detects more events than both TwiCal and Twevent do.
One possible reason for the bad performance of TwiCal is that it uses super-
vised technique and annotates only a very small number of tweets to extract
event phrases, and thus may not adapt to the dynamic environment of Twitter
when new concepts appear. Twevent filters out unnecessary events and thus has
much fewer false alarms than our algorithm does. However, Twevent fails to
detect many important events. One possible reason is that it introduces thresh-
olds to identify bursty segments, which may not adapt well to various burst
patterns of different types of events.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

Length of Time Frame

#
 o

f
E

v
e
n
ts

 D
e
te

c
te

d

U
L
 = 5 min

U
L
 = 10 min

(a) Compare UL

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

Length of Time Frame

#
 o

f
E

v
e
n
ts

 D
e
te

c
te

d

cluster_thres = 0.6

cluster_thres = 0.8

cluster_thres = 1

(b) Compare clu thres

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

Length of Time Frame

#
 o

f
E

v
e
n
ts

 D
e
te

c
te

d

V = 1

V = 3

V = 5

(c) Compare V

Fig. 2. Compare event detection results with different parameter settings.

Table 2. Number of events detected by different methods on different days

Nov 1 Nov 2 Nov 3 Nov 4 Nov 5 Nov 6

TwiCal 2 0 2 3 3 0

Twevent (n = 1) 0 0 0 0 1 0

Twevent (n ≤ 2) 0 0 0 0 1 0

Twevent (n ≤ 3) 1 0 0 0 1 0

Our Method 6 4 5 5 10 5

2 http://statuscalendar.com.

http://statuscalendar.com

Adjustable Time-Window-Based Event Detection on Twitter 275

Impact of Parameter Settings. We first compare the impact of UL, clu thres
and V in Fig. 2. We set UL = 10 min, clu thres = 0.8 and V = 3 if not specifying
their varying values.

In Fig. 2a, we present the number of events detected with UL =5 min and
10 min. We can see that more events are detected with a shorter time unit.
However, the drawback of using a shorter time unit is that we report events
more frequently and thus may return more false alarm events.

We then compare how the clustering threshold affects the results. In Fig. 2b,
we present the number of events detected with clu thres =0.6, 0.8 and 1, respec-
tively. The results show that a lower clu thres yields better performance. How-
ever, we observe that the clusters generated by a lower clu thres are more messed
up with words referring to different events.

We finally evaluate how the number of past time windows we average on
affects the results. The results in Fig. 2c indicate that our algorithm performs
better with a smaller V . This may be that we could better adapt to the dynamic
environment of Twitter when V is smaller.

5.3 Efficiency Evaluation

We finally evaluate whether our algorithms are suitable for real-time application.
Particularly, the preprocessing component takes on average 0.8ms to process a
tweet, which is far beyond the average arrival rate of tweets from Twitter’s
sampled streaming API (52 ms/tweet). We present the results as follows.

Identification of Abnormal Terms, Clustering and Ranking. The time
consumed by identification of abnormal terms depends on the total number of
terms in a queried time window. Our results indicate that our algorithm identifies
abnormal terms in 2.7 s when we average over 5 past time windows and the time
window is as large as 120 min, demonstrating that we could efficiently complete
the task in this step of processing. The time consumed by ranking also depends
on the length of the queried time window. Results show that we can return
top-20 clusters of a 120-min time window in 0.25 s.

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

Length of Time Frame

C
lu

st
er

in
g

Ti
m

e
(s

ec
)

Using term_set
Pair−wise Comparison

(a) Clustering time with UL =
10 min, clu thres = 0.8, V = 3

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Length of Time Frame

Q
ue

ry
 T

im
e

(s
ec

)

ST−tree
TS
SS

(b) Query time of ST-tree, TS
and SS with UL = 10 min, V = 5

Fig. 3. Compare clustering time consumption and Query time of ST-tree.

276 Q. Wang et al.

We finally come to the time consumption of the clustering component. In
Fig. 3a, we present how our strategy of using term set improves the clustering
efficiency. Notice that the naive pair-wise comparison method is extremely inef-
ficient when the length of queried time window is large. However, our algorithm
could finish clustering for a 120-min time window in 4 s.

ST-tree Specific. In this part, we evaluate the efficiency of ST-tree. Adjustable
time window event detection differs from the original problem in three aspects:
built-up of ST-tree, update and query of statistics. For the built-up of ST-tree,
we can construct a complete ST-tree with 360 leaves (LM = 60 and V = 5) in
0.032 s, showing that initialization of ST-tree is efficient.

Table 3. Update Time of ST-tree and SS (UL=10 min)

Algorithm LM V # of Leaves Update Time (sec)

ST-tree 6 5 36 0.0325

SS 6 5 - 0.4932

ST-tree 30 5 180 0.1764

SS 30 5 - 2.0573

ST-tree 30 10 330 0.3584

SS 30 10 - 2.2059

In Table 3, we present the update time of ST-tree and SS with different val-
ues of LM and V . We do not compare with TS since TS only needs to update
statistics of the current time unit, which is performed continuously in the pre-
processing component. We can see that ST-tree takes much less time than SS to
update statistics. Even when updating a ST-tree with 330 leaves, we finish the
procedure in less than 0.4s, which is highly efficient.

In Fig. 3b, we present the query time of three algorithms w.r.t. various queried
time window lengths L. We set the time unit as 10 min, and LM as 12 time
units, i.e. 2 h. The first observation is that SS is the most efficient in all lengths
of queried time window due to its O(V) query time complexity. Second, when
the length of queried time window is small, i.e. less than 4, TS beats ST-tree.
The reason is that TS simply aggregates statistics of L time units, while ST-tree
may need to visit some deep nodes of ST-tree to obtain statistics of a short time
window and thus result in a longer query time than TS.

6 Related Work

A comprehensive survey [2] on event detection on Twitter is proposed. We
summarize major techniques of event detection on Twitter. Many previous
works focused on detecting specific category of events [6,8,10,12], or required
queries from users and assumed a topic-based stream [12]. Recently, some works

Adjustable Time-Window-Based Event Detection on Twitter 277

focused on detecting topic-based events in crowdsourcing markets and social net-
works [16,17] and assisted task assignment in the markets and social networks
[13,14,18,19]. In addition, [11] claimed to be the first to detect open-domain
events on Twitter. Some others [5,20] could also detect unspecific events. How-
ever, [5,11,20] used time-demanding techniques and were not suitable for real-
time applications on Twitter. Some works detected only geo-spatial events [1].
Furthermore, the issue of detecting experts on Twitter is also studied [3,4].

To detect emerging events, some works first identified bursty words [1,6,7,9].
However, they often introduced burst thresholds. For grouping terms/tweets into
events, two types of techniques were developed: clustering [1,6,9] and graph
partitioning [20]. Clustering of short-text tweets could be difficult, while graph
partitioning based methods may be time-consuming.

Finally, adjustable time window event detection is not yet studied. [1,7] both
used fixed time frames to detect bursty terms. [15] enabled timeline zooming.

7 Conclusion

In this paper, we study the problem of adjustable time window based event
detection in Twitter. We design an abnormality score calculated by term fre-
quency, user frequency and past averaged records to identify abnormal terms
in a simple and free-of-threshold way. We then propose a highly efficient clus-
tering algorithm to group co-occurring terms to form clusters, i.e. events. We
further design ST-tree to adjustable time window based enable event detection.
Extensive experiments on real dataset show that our algorithm can effectively
and timely identify real-world events.

Acknowledgment. This work is supported in part by the National Science Founda-
tion of China (NSFC) under Grant No. 61502021, 61328202, and 61532004, National
Grand Fundamental Research 973 Program of China under Grant 2012CB316200, the
Hong Kong RGC Project N HKUST637/13, NSFC Guang Dong Grant No. U1301253,
Microsoft Research Asia Gift Grant, Google Faculty Award 2013.

References

1. Abdelhaq, H., Sengstock, C., Gertz, M.: Eventweet: online localized event detection
from twitter. PVLDB 6(12), 1326–1329 (2013)

2. Atefeh, F., Khreich, W.: A survey of techniques for event detection in twitter.
Comput. Intell. 31(1), 132–164 (2013)

3. Cao, C.C., She, J., Tong, Y., Chen, L.: Whom to ask?: jury selection for decision
making tasks on micro-blog services. PVLDB 5(11), 1495–1506 (2012)

4. Cao, C.C., Tong, Y., Chen, L., Jagadish, H.V.: Wisemarket: a new paradigm for
managing wisdom of online social users. In: SIGKDD 2013, pp. 455–463 (2013)

5. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based
on temporal and social terms evaluation. In: MDMKDD 2010, p. 4 (2010)

6. Goorha, S., Ungar, L.: Discovery of significant emerging trends. In: SIGKDD 2010,
pp. 57–64 (2010)

278 Q. Wang et al.

7. Li, C., Sun, A., Datta, A.: Twevent: Segment-based event detection from tweets.
In: CIKM 2012, pp. 155–164 (2012)

8. Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.: Tedas: a twitter-based event detec-
tion and analysis system. In: ICDE 2012, pp. 1273–1276 (2012)

9. Mathioudakis, M., Koudas, N.: Twittermonitor: trend detection over the twitter
stream. In: SIGMOD 2010, pp. 1155–1158 (2010)

10. Popescu, A.M., Pennacchiotti, M.: Detecting controversial events from twitter. In:
CIKM 2010, pp. 1873–1876 (2010)

11. Ritter, A., Etzioni, O., Clark, S., et al.: Open domain event extraction from twitter.
In: KDD 2012, pp. 1104–1112 (2012)

12. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: Real-time
event detection by social sensors. In: WWW 2010, pp. 851–860 (2010)

13. She, J., Tong, Y., Chen, L.: Utility-aware social event-participant planning. In:
SIGMOD 2015, pp. 1629–1643 (2015)

14. She, J., Tong, Y., Chen, L., Cao, C.C.: Conflict-aware event-participant arrange-
ment. In: ICDE 2015, pp. 735–746 (2015)

15. Shou, L., Wang, Z., Chen, K., Chen, G.: Sumblr: continuous summarization of
evolving tweet streams. In: SIGIR 2013, pp. 533–542 (2013)

16. Tong, Y., Cao, C.C., Chen, L.: Tcs: Efficient topic discovery over crowd-oriented
service data. In: SIGKDD 2014, pp. 861–870 (2014)

17. Tong, Y., Cao, C.C., Zhang, C.J., Li, Y., Chen, L.: Crowdcleaner: Data cleaning
for multi-version data on the web via crowdsourcing. In: ICDE 2014, pp. 1182–1185
(2014)

18. Tong, Y., She, J., Ding, B., Wang, L., Chen, L.: Online mobile micro-task allocation
in spatial crowdsourcing. In: ICDE 2016 (2016)

19. Tong, Y., She, J., Meng, R.: Bottleneck-aware arrangement over event-based social
networks: the max-min approach. World Wide Web Journal (to appear)

20. Weng, J., Lee, B.S.: Event detection in twitter. In: ICWSM 2011, pp. 401–408
(2011)

	Adjustable Time-Window-Based Event Detection on Twitter
	1 Introduction
	2 Problem Formulation
	3 Event Detection
	3.1 System Overview
	3.2 Processing of Tweets
	3.3 Identification of Abnormal Terms
	3.4 Clustering Abnormal Terms
	3.5 Ranking Events
	3.6 Complexity Analysis

	4 Adjustable Time Window Event Detection
	4.1 Description of ST-tree
	4.2 Update
	4.3 Query
	4.4 Complexity Analysis

	5 Experimental Study
	5.1 Experimental Setup
	5.2 Effectiveness Evaluation
	5.3 Efficiency Evaluation

	6 Related Work
	7 Conclusion
	References

